=(x^2y^2z+2z+9xyz)(3x^2y^2z^2+7xyz)

Simple and best practice solution for =(x^2y^2z+2z+9xyz)(3x^2y^2z^2+7xyz) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =(x^2y^2z+2z+9xyz)(3x^2y^2z^2+7xyz) equation:


Simplifying
0 = (x2y2z + 2z + 9xyz)(3x2y2z2 + 7xyz)

Reorder the terms:
0 = (9xyz + x2y2z + 2z)(3x2y2z2 + 7xyz)

Reorder the terms:
0 = (9xyz + x2y2z + 2z)(7xyz + 3x2y2z2)

Multiply (9xyz + x2y2z + 2z) * (7xyz + 3x2y2z2)
0 = (9xyz * (7xyz + 3x2y2z2) + x2y2z(7xyz + 3x2y2z2) + 2z * (7xyz + 3x2y2z2))
0 = ((7xyz * 9xyz + 3x2y2z2 * 9xyz) + x2y2z(7xyz + 3x2y2z2) + 2z * (7xyz + 3x2y2z2))
0 = ((63x2y2z2 + 27x3y3z3) + x2y2z(7xyz + 3x2y2z2) + 2z * (7xyz + 3x2y2z2))
0 = (63x2y2z2 + 27x3y3z3 + (7xyz * x2y2z + 3x2y2z2 * x2y2z) + 2z * (7xyz + 3x2y2z2))
0 = (63x2y2z2 + 27x3y3z3 + (7x3y3z2 + 3x4y4z3) + 2z * (7xyz + 3x2y2z2))
0 = (63x2y2z2 + 27x3y3z3 + 7x3y3z2 + 3x4y4z3 + (7xyz * 2z + 3x2y2z2 * 2z))
0 = (63x2y2z2 + 27x3y3z3 + 7x3y3z2 + 3x4y4z3 + (14xyz2 + 6x2y2z3))

Reorder the terms:
0 = (14xyz2 + 63x2y2z2 + 6x2y2z3 + 7x3y3z2 + 27x3y3z3 + 3x4y4z3)
0 = (14xyz2 + 63x2y2z2 + 6x2y2z3 + 7x3y3z2 + 27x3y3z3 + 3x4y4z3)

Solving
0 = 14xyz2 + 63x2y2z2 + 6x2y2z3 + 7x3y3z2 + 27x3y3z3 + 3x4y4z3

Solving for variable 'x'.
Remove the zero:
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 14xyz2 + 63x2y2z2 + 6x2y2z3 + 7x3y3z2 + 27x3y3z3 + 3x4y4z3 + -14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3

Reorder the terms:
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 14xyz2 + -14xyz2 + 63x2y2z2 + -63x2y2z2 + 6x2y2z3 + -6x2y2z3 + 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3

Combine like terms: 14xyz2 + -14xyz2 = 0
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 0 + 63x2y2z2 + -63x2y2z2 + 6x2y2z3 + -6x2y2z3 + 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 63x2y2z2 + -63x2y2z2 + 6x2y2z3 + -6x2y2z3 + 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3

Combine like terms: 63x2y2z2 + -63x2y2z2 = 0
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 0 + 6x2y2z3 + -6x2y2z3 + 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 6x2y2z3 + -6x2y2z3 + 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3

Combine like terms: 6x2y2z3 + -6x2y2z3 = 0
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 0 + 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 7x3y3z2 + -7x3y3z2 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3

Combine like terms: 7x3y3z2 + -7x3y3z2 = 0
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 0 + 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 27x3y3z3 + -27x3y3z3 + 3x4y4z3 + -3x4y4z3

Combine like terms: 27x3y3z3 + -27x3y3z3 = 0
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 0 + 3x4y4z3 + -3x4y4z3
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 3x4y4z3 + -3x4y4z3

Combine like terms: 3x4y4z3 + -3x4y4z3 = 0
-14xyz2 + -63x2y2z2 + -6x2y2z3 + -7x3y3z2 + -27x3y3z3 + -3x4y4z3 = 0

Factor out the Greatest Common Factor (GCF), '-1xyz2'.
-1xyz2(14 + 63xy + 6xyz + 7x2y2 + 27x2y2z + 3x3y3z) = 0

Ignore the factor -1.

Subproblem 1

Set the factor 'xyz2' equal to zero and attempt to solve: Simplifying xyz2 = 0 Solving xyz2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying xyz2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Subproblem 2

Set the factor '(14 + 63xy + 6xyz + 7x2y2 + 27x2y2z + 3x3y3z)' equal to zero and attempt to solve: Simplifying 14 + 63xy + 6xyz + 7x2y2 + 27x2y2z + 3x3y3z = 0 Solving 14 + 63xy + 6xyz + 7x2y2 + 27x2y2z + 3x3y3z = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| X^2-15X+26=0 | | 27(x^2+5x-280)=0 | | 24x^3-9x^2+32x-12= | | 7(2x-3)=3(4x-11) | | 7b^2+48b-7= | | =(m^3+2n^2)(9m^3+12n^2) | | 8x^3+6x^2-12x-9= | | =(3ab+9)(3ab+7) | | -12-2x=8(8x+7)-2 | | y=x^4+8x^3-20x^2-72x-63 | | 4(3x+2)-16=16 | | 2y-6+14y+8=-2y-2 | | 34+3a=-7(1+a)+1 | | y=x^2-25 | | 6x^2+4x+11=0 | | 7x(8x-5)=0 | | y=x^3-8x^2+11x+20 | | 5(13x)=25+10x | | -28+6m+10m^2=0 | | 13x-(5x-11)=-13 | | -48+x=-8(7+x)+10x | | y=x^2-x-56 | | 8(3b-8)=10b+48 | | X^2+4x=-4 | | 9m-(4m-8)=53 | | -48-7n=9n-5(4n+8) | | s^2+4s-21= | | 4(1+4x)=7x+40 | | 5m-(6m+9)=11 | | 3x+1y+1z=10 | | 40-6x=-10(9x-4) | | 4x^3+6x^2-26x-14=0 |

Equations solver categories